Serveur d'exploration sur la détoxication des champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Symbiont-driven sulfur crystal formation in a thiotrophic symbiosis from deep-sea hydrocarbon seeps.

Identifieur interne : 001454 ( Main/Exploration ); précédent : 001453; suivant : 001455

Symbiont-driven sulfur crystal formation in a thiotrophic symbiosis from deep-sea hydrocarbon seeps.

Auteurs : Irmgard Eichinger [Autriche] ; Stephan Schmitz-Esser ; Markus Schmid ; Charles R. Fisher ; Monika Bright

Source :

RBID : pubmed:24992535

Descripteurs français

English descriptors

Abstract

The siboglinid tubeworm Sclerolinum contortum symbiosis inhabits sulfidic sediments at deep-sea hydrocarbon seeps in the Gulf of Mexico. A single symbiont phylotype in the symbiont-housing organ is inferred from phylogenetic analyses of the 16S ribosomal ribonucleic acid (16S rRNA) gene and fluorescent in situ hybridization. The phylotype we studied here, and a previous study from an arctic hydrocarbon seep population, reveal identical 16S rRNA symbiont gene sequences. While sulfide is apparently the energy source for the symbionts (and ultimately the gutless host), both partners also have to cope with its toxicity. This study demonstrates abundant large sulfur crystals restricted to the trophosome area. Based on Raman microspectroscopy and energy dispersive X-ray analysis, these crystals have the same S8 sulfur configuration as the recently described small sulfur vesicles formed in the symbionts. The crystals reside adjacent to the symbionts in the trophosome. This suggests that their formation is either extra- or intracellular in symbionts. We propose that formation of these crystals provides both energy-storage compounds for the symbionts and serves the symbiosis by removing excess toxic sulfide from host tissues. This symbiont-mediated sulfide detoxification may have been crucial for the establishment of thiotrophic symbiosis and continues to remain an important function of the symbionts.

DOI: 10.1111/1758-2229.12149
PubMed: 24992535
PubMed Central: PMC4232855


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Symbiont-driven sulfur crystal formation in a thiotrophic symbiosis from deep-sea hydrocarbon seeps.</title>
<author>
<name sortKey="Eichinger, Irmgard" sort="Eichinger, Irmgard" uniqKey="Eichinger I" first="Irmgard" last="Eichinger">Irmgard Eichinger</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Limnology and Oceanography, Faculty of Life Sciences, University of Vienna, Althanstr. 14, 1090, Vienna, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Department of Limnology and Oceanography, Faculty of Life Sciences, University of Vienna, Althanstr. 14, 1090, Vienna</wicri:regionArea>
<placeName>
<settlement type="city">Vienne (Autriche)</settlement>
<region nuts="2" type="province">Vienne (Autriche)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schmitz Esser, Stephan" sort="Schmitz Esser, Stephan" uniqKey="Schmitz Esser S" first="Stephan" last="Schmitz-Esser">Stephan Schmitz-Esser</name>
</author>
<author>
<name sortKey="Schmid, Markus" sort="Schmid, Markus" uniqKey="Schmid M" first="Markus" last="Schmid">Markus Schmid</name>
</author>
<author>
<name sortKey="Fisher, Charles R" sort="Fisher, Charles R" uniqKey="Fisher C" first="Charles R" last="Fisher">Charles R. Fisher</name>
</author>
<author>
<name sortKey="Bright, Monika" sort="Bright, Monika" uniqKey="Bright M" first="Monika" last="Bright">Monika Bright</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24992535</idno>
<idno type="pmid">24992535</idno>
<idno type="doi">10.1111/1758-2229.12149</idno>
<idno type="pmc">PMC4232855</idno>
<idno type="wicri:Area/Main/Corpus">001497</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001497</idno>
<idno type="wicri:Area/Main/Curation">001497</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001497</idno>
<idno type="wicri:Area/Main/Exploration">001497</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Symbiont-driven sulfur crystal formation in a thiotrophic symbiosis from deep-sea hydrocarbon seeps.</title>
<author>
<name sortKey="Eichinger, Irmgard" sort="Eichinger, Irmgard" uniqKey="Eichinger I" first="Irmgard" last="Eichinger">Irmgard Eichinger</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Limnology and Oceanography, Faculty of Life Sciences, University of Vienna, Althanstr. 14, 1090, Vienna, Austria.</nlm:affiliation>
<country xml:lang="fr">Autriche</country>
<wicri:regionArea>Department of Limnology and Oceanography, Faculty of Life Sciences, University of Vienna, Althanstr. 14, 1090, Vienna</wicri:regionArea>
<placeName>
<settlement type="city">Vienne (Autriche)</settlement>
<region nuts="2" type="province">Vienne (Autriche)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schmitz Esser, Stephan" sort="Schmitz Esser, Stephan" uniqKey="Schmitz Esser S" first="Stephan" last="Schmitz-Esser">Stephan Schmitz-Esser</name>
</author>
<author>
<name sortKey="Schmid, Markus" sort="Schmid, Markus" uniqKey="Schmid M" first="Markus" last="Schmid">Markus Schmid</name>
</author>
<author>
<name sortKey="Fisher, Charles R" sort="Fisher, Charles R" uniqKey="Fisher C" first="Charles R" last="Fisher">Charles R. Fisher</name>
</author>
<author>
<name sortKey="Bright, Monika" sort="Bright, Monika" uniqKey="Bright M" first="Monika" last="Bright">Monika Bright</name>
</author>
</analytic>
<series>
<title level="j">Environmental microbiology reports</title>
<idno type="eISSN">1758-2229</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animal Structures (microbiology)</term>
<term>Animals (MeSH)</term>
<term>Aquatic Organisms (microbiology)</term>
<term>Bacteria (classification)</term>
<term>Bacteria (genetics)</term>
<term>Bacteria (isolation & purification)</term>
<term>Bacteria (metabolism)</term>
<term>Bacterial Physiological Phenomena (MeSH)</term>
<term>Cluster Analysis (MeSH)</term>
<term>Crystallization (MeSH)</term>
<term>DNA, Ribosomal (chemistry)</term>
<term>DNA, Ribosomal (genetics)</term>
<term>In Situ Hybridization, Fluorescence (MeSH)</term>
<term>Mexico (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Polychaeta (microbiology)</term>
<term>RNA, Ribosomal, 16S (genetics)</term>
<term>Seawater (MeSH)</term>
<term>Sequence Analysis, DNA (MeSH)</term>
<term>Spectrometry, X-Ray Emission (MeSH)</term>
<term>Spectrum Analysis, Raman (MeSH)</term>
<term>Sulfur (metabolism)</term>
<term>Symbiosis (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN ribosomique (composition chimique)</term>
<term>ADN ribosomique (génétique)</term>
<term>ARN ribosomique 16S (génétique)</term>
<term>Analyse de regroupements (MeSH)</term>
<term>Analyse de séquence d'ADN (MeSH)</term>
<term>Analyse spectrale Raman (MeSH)</term>
<term>Animaux (MeSH)</term>
<term>Bactéries (classification)</term>
<term>Bactéries (génétique)</term>
<term>Bactéries (isolement et purification)</term>
<term>Bactéries (métabolisme)</term>
<term>Cristallisation (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Eau de mer (MeSH)</term>
<term>Hybridation fluorescente in situ (MeSH)</term>
<term>Mexique (MeSH)</term>
<term>Organismes aquatiques (microbiologie)</term>
<term>Phylogenèse (MeSH)</term>
<term>Phénomènes physiologiques bactériens (MeSH)</term>
<term>Polychaeta (microbiologie)</term>
<term>Soufre (métabolisme)</term>
<term>Spectrométrie d'émission X (MeSH)</term>
<term>Structures anatomiques de l'animal (microbiologie)</term>
<term>Symbiose (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>DNA, Ribosomal</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Ribosomal, 16S</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Sulfur</term>
</keywords>
<keywords scheme="MESH" type="geographic" xml:lang="en">
<term>Mexico</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Bacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>ADN ribosomique</term>
<term>Bactéries</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Bacteria</term>
<term>DNA, Ribosomal</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN ribosomique</term>
<term>ARN ribosomique 16S</term>
<term>Bactéries</term>
</keywords>
<keywords scheme="MESH" qualifier="isolation & purification" xml:lang="en">
<term>Bacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Bactéries</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Bacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Organismes aquatiques</term>
<term>Polychaeta</term>
<term>Structures anatomiques de l'animal</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Animal Structures</term>
<term>Aquatic Organisms</term>
<term>Polychaeta</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Bactéries</term>
<term>Soufre</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Bacterial Physiological Phenomena</term>
<term>Cluster Analysis</term>
<term>Crystallization</term>
<term>In Situ Hybridization, Fluorescence</term>
<term>Molecular Sequence Data</term>
<term>Phylogeny</term>
<term>Seawater</term>
<term>Sequence Analysis, DNA</term>
<term>Spectrometry, X-Ray Emission</term>
<term>Spectrum Analysis, Raman</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de regroupements</term>
<term>Analyse de séquence d'ADN</term>
<term>Analyse spectrale Raman</term>
<term>Animaux</term>
<term>Cristallisation</term>
<term>Données de séquences moléculaires</term>
<term>Eau de mer</term>
<term>Hybridation fluorescente in situ</term>
<term>Mexique</term>
<term>Phylogenèse</term>
<term>Phénomènes physiologiques bactériens</term>
<term>Spectrométrie d'émission X</term>
<term>Symbiose</term>
</keywords>
<keywords scheme="Wicri" type="geographic" xml:lang="fr">
<term>Mexique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The siboglinid tubeworm Sclerolinum contortum symbiosis inhabits sulfidic sediments at deep-sea hydrocarbon seeps in the Gulf of Mexico. A single symbiont phylotype in the symbiont-housing organ is inferred from phylogenetic analyses of the 16S ribosomal ribonucleic acid (16S rRNA) gene and fluorescent in situ hybridization. The phylotype we studied here, and a previous study from an arctic hydrocarbon seep population, reveal identical 16S rRNA symbiont gene sequences. While sulfide is apparently the energy source for the symbionts (and ultimately the gutless host), both partners also have to cope with its toxicity. This study demonstrates abundant large sulfur crystals restricted to the trophosome area. Based on Raman microspectroscopy and energy dispersive X-ray analysis, these crystals have the same S8 sulfur configuration as the recently described small sulfur vesicles formed in the symbionts. The crystals reside adjacent to the symbionts in the trophosome. This suggests that their formation is either extra- or intracellular in symbionts. We propose that formation of these crystals provides both energy-storage compounds for the symbionts and serves the symbiosis by removing excess toxic sulfide from host tissues. This symbiont-mediated sulfide detoxification may have been crucial for the establishment of thiotrophic symbiosis and continues to remain an important function of the symbionts. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24992535</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>02</Month>
<Day>20</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>01</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1758-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>6</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2014</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Environmental microbiology reports</Title>
<ISOAbbreviation>Environ Microbiol Rep</ISOAbbreviation>
</Journal>
<ArticleTitle>Symbiont-driven sulfur crystal formation in a thiotrophic symbiosis from deep-sea hydrocarbon seeps.</ArticleTitle>
<Pagination>
<MedlinePgn>364-72</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/1758-2229.12149</ELocationID>
<Abstract>
<AbstractText>The siboglinid tubeworm Sclerolinum contortum symbiosis inhabits sulfidic sediments at deep-sea hydrocarbon seeps in the Gulf of Mexico. A single symbiont phylotype in the symbiont-housing organ is inferred from phylogenetic analyses of the 16S ribosomal ribonucleic acid (16S rRNA) gene and fluorescent in situ hybridization. The phylotype we studied here, and a previous study from an arctic hydrocarbon seep population, reveal identical 16S rRNA symbiont gene sequences. While sulfide is apparently the energy source for the symbionts (and ultimately the gutless host), both partners also have to cope with its toxicity. This study demonstrates abundant large sulfur crystals restricted to the trophosome area. Based on Raman microspectroscopy and energy dispersive X-ray analysis, these crystals have the same S8 sulfur configuration as the recently described small sulfur vesicles formed in the symbionts. The crystals reside adjacent to the symbionts in the trophosome. This suggests that their formation is either extra- or intracellular in symbionts. We propose that formation of these crystals provides both energy-storage compounds for the symbionts and serves the symbiosis by removing excess toxic sulfide from host tissues. This symbiont-mediated sulfide detoxification may have been crucial for the establishment of thiotrophic symbiosis and continues to remain an important function of the symbionts. </AbstractText>
<CopyrightInformation>© 2014 The Authors. Environmental Microbiology Reports published by Society for Applied Microbiology and John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Eichinger</LastName>
<ForeName>Irmgard</ForeName>
<Initials>I</Initials>
<AffiliationInfo>
<Affiliation>Department of Limnology and Oceanography, Faculty of Life Sciences, University of Vienna, Althanstr. 14, 1090, Vienna, Austria.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schmitz-Esser</LastName>
<ForeName>Stephan</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schmid</LastName>
<ForeName>Markus</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fisher</LastName>
<ForeName>Charles R</ForeName>
<Initials>CR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bright</LastName>
<ForeName>Monika</ForeName>
<Initials>M</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>HE614013</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>03</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Environ Microbiol Rep</MedlineTA>
<NlmUniqueID>101499207</NlmUniqueID>
<ISSNLinking>1758-2229</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004275">DNA, Ribosomal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012336">RNA, Ribosomal, 16S</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>70FD1KFU70</RegistryNumber>
<NameOfSubstance UI="D013455">Sulfur</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000825" MajorTopicYN="N">Animal Structures</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059001" MajorTopicYN="N">Aquatic Organisms</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001419" MajorTopicYN="N">Bacteria</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="Y">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="Y">isolation & purification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018407" MajorTopicYN="N">Bacterial Physiological Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016000" MajorTopicYN="N">Cluster Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003460" MajorTopicYN="N">Crystallization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004275" MajorTopicYN="N">DNA, Ribosomal</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017404" MajorTopicYN="N">In Situ Hybridization, Fluorescence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008800" MajorTopicYN="N" Type="Geographic">Mexico</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011077" MajorTopicYN="N">Polychaeta</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012336" MajorTopicYN="N">RNA, Ribosomal, 16S</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012623" MajorTopicYN="N">Seawater</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013052" MajorTopicYN="N">Spectrometry, X-Ray Emission</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013059" MajorTopicYN="N">Spectrum Analysis, Raman</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013455" MajorTopicYN="N">Sulfur</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="Y">Symbiosis</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>06</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>01</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>7</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>7</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>2</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24992535</ArticleId>
<ArticleId IdType="doi">10.1111/1758-2229.12149</ArticleId>
<ArticleId IdType="pmc">PMC4232855</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Int J Syst Bacteriol. 1999 Apr;49 Pt 2:697-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10319493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2000 Feb;66(2):651-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10653731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Feb 25;32(4):1363-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14985472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2005 Sep;7(9):1369-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16104860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Theor Biol. 2006 Mar 21;239(2):195-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16242728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2005 Dec;71(12):7724-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16332745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Bull. 2007 Jun;212(3):180-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17565107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1983 Jan 21;219(4582):295-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17798279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1981 Jul 17;213(4505):336-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17819905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1981 Jul 17;213(4505):340-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17819907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Bull. 2008 Apr;214(2):135-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18400995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Cell. 2009 Jan;101(1):43-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18598237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Microbiol. 2008 Dec;10(12):3237-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18707616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2008 Oct;6(10):725-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18794911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comp Biochem Physiol A Mol Integr Physiol. 2010 Jan;155(1):41-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19770067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mar Environ Res. 2010 Jun;69(5):382-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20202680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microb Ecol. 2010 Oct;60(3):516-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20401609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2010 Nov 23;1:126</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21119639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Bull. 2011 Apr;220(2):128-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21551449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Bull. 2011 Apr;220(2):140-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21551450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Jul 19;108(29):12078-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21709249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Org Divers Evol. 2013;13(3):311-329</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25960690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Bull. 1991 Feb;180(1):135-153</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29303639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Mar Biol Biotechnol. 1997 Sep;6(3):268-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9284565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Biol. 1997;200(Pt 5):883-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9318669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Zool. 1998 May-Jun;71(3):294-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9634176</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Autriche</li>
</country>
<region>
<li>Vienne (Autriche)</li>
</region>
<settlement>
<li>Vienne (Autriche)</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Bright, Monika" sort="Bright, Monika" uniqKey="Bright M" first="Monika" last="Bright">Monika Bright</name>
<name sortKey="Fisher, Charles R" sort="Fisher, Charles R" uniqKey="Fisher C" first="Charles R" last="Fisher">Charles R. Fisher</name>
<name sortKey="Schmid, Markus" sort="Schmid, Markus" uniqKey="Schmid M" first="Markus" last="Schmid">Markus Schmid</name>
<name sortKey="Schmitz Esser, Stephan" sort="Schmitz Esser, Stephan" uniqKey="Schmitz Esser S" first="Stephan" last="Schmitz-Esser">Stephan Schmitz-Esser</name>
</noCountry>
<country name="Autriche">
<region name="Vienne (Autriche)">
<name sortKey="Eichinger, Irmgard" sort="Eichinger, Irmgard" uniqKey="Eichinger I" first="Irmgard" last="Eichinger">Irmgard Eichinger</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/DetoxFungiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001454 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001454 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    DetoxFungiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24992535
   |texte=   Symbiont-driven sulfur crystal formation in a thiotrophic symbiosis from deep-sea hydrocarbon seeps.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24992535" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a DetoxFungiV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 16:09:04 2020. Site generation: Fri Nov 20 16:15:24 2020